Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica ; (12): 2560-2568, 2023.
Article in Chinese | WPRIM | ID: wpr-999027

ABSTRACT

A breakthrough in molecular biology for the twenty-first century is CRISPR/Cas gene editing, which has been used in a variety of fields due to its simplicity, adaptability, and targeting. Given the current global challenge of severe bacterial resistance, difficulties in detecting antimicrobial resistance, and slow development of antimicrobial drugs, CRISPR/Cas gene-editing technology offers a promising avenue for the development of antibacterial treatments. On the one hand, CRISPR/Cas gene editing technology helps advance the study of bacterial functions and serves as a toolbox. For instance, Cas proteins and exogenous repair systems enable efficient and precise gene editing, nCas proteins and deaminase systems facilitate template-free and single base precision editing, dCas proteins and reverse transcriptase allow for repair-free gene editing, and dCas proteins and modified sgRNA enable gene expression level regulation and gene function analysis. On the other hand, its specific gene recognition and targeted DNA cleavage characteristics can be used for pathogen detection, elimination of drug-resistant bacteria and genes, and hold promise as a new strategy for clinical diagnosis and treatment.

2.
Acta Pharmaceutica Sinica ; (12): 413-420, 2020.
Article in Chinese | WPRIM | ID: wpr-815838

ABSTRACT

Sepsis is a refractory disease with high mortality in which the host's immune response to the infection is dysfunctional, resulting in life-threatening organ function damage. The pathogenesis of sepsis is complex, involving systemic inflammation, immunosuppressive and coagulation abnormalities, and endothelial barrier damage caused by the infecting pathogenic microorganisms and their toxins. The pathogenesis of sepsis is closely related to multiple systems disorder and multiple organ dysfunction and failure. In recent years, the incidence of sepsis has been increasing globally, with an annual increase of 9%. Since the development of sepsis does not depend on the infecting pathogenic microorganisms and the late inflammatory reaction can be life-threatening, clinical treatment of sepsis can be very difficult. However, the current antibiotic treatments for sepsis are not ideal. Most clinical treatments are not curative, so researchers seek new drug designs based on exploring molecular mechanisms of the pathophysiological process in sepsis patients. This paper reviews the recent development of drugs designed according to the sepsis pathophysiological process.

3.
Acta Pharmaceutica Sinica ; (12): 2031-2038, 2019.
Article in Chinese | WPRIM | ID: wpr-780293

ABSTRACT

Polymyxin B and polymyxin E (colistin) are increasingly used as last-resort drugs for treatment of infections caused by multidrug-resistant gram-negative pathogens. Unfortunately, the application was limited due to the serious side effects, especially nephrotoxicity. Very recently, the need for developing more tolerated and more effective polymyxin analogues has grown. This study details the design, synthesis, and evaluation of two classes of polymyxin B analogues with varying hydrophobicity and bulkiness at the N-terminal fatty acyl chain or position 6 amino acid. 20 polymyxin B analogues were synthesized and the chemical structures of the analogues were confirmed by HR-MS and 1H NMR spectra. Compounds 7e (MIC: 0.5-4 μg·mL-1) and 7l (MIC: 0.25-2 μg·mL-1) showed similar or better antimicrobial activity against both susceptible and resistant strains of Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa compared to polymyxin B (MIC: 0.5-2 μg·mL-1). Besides, compound 7l (CC50: 217.1±13.2 μg·mL-1) displayed noticeably decreased renal cytotoxicity compared to polymyxin B (CC50: 120.3±6.0 μg·mL-1). This work establishes the base of further study on the structure-activity relationship of polymyxin B.

4.
Acta Pharmaceutica Sinica ; (12): 1627-1635, 2019.
Article in Chinese | WPRIM | ID: wpr-780268

ABSTRACT

Using CBBR as the parent core constructed in our lab, we designed and synthesized 15 novel compounds with diverse structures for evaluation of anti-bacterial activities. Structure activity relationship studies revealed that ① ring C was essential for the activity; ② 7,8- or 8,13-disubstituted CBBR derivatives showed ideal activities, weaker or similar to those corresponding to 7-, 8-, or 13-monosubstituted CBBR derivatives. Among those, compound 9a showed the most potential activity against MRSA/VISA isolates with MIC values of 1-2 μg·mL-1, much better than Lev. 9a also displayed higher stability in the plasma and liver microsomes. Molecular docking indicated that 9a might target bacterial DNA Topo IV ParE subunit, indicating a mode of action distinct from current antibacterial drugs on market. The results provided key scientific evidence for developing such compounds into a new family of anti-MRSA drugs.

5.
Acta Pharmaceutica Sinica ; (12): 1538-1546, 2019.
Article in Chinese | WPRIM | ID: wpr-780254

ABSTRACT

Transforming growth factor-β (TGF-β) belongs to a group of biologically active cytokines that bind to its receptors to activate Smad signaling and non-Smad signaling pathways. The biological functions of TGF-β include promoting cell epithelial-mesenchymal transition, tissue fibrosis, angiogenesis and tumor immune evasion, as well as dual effects of cancer suppression and cancer promotion. Given the fact that the ligand- and receptors-mediated abnormal activation of TGF-β signaling pathways play an important role in the pathogenesis of multiple diseases such as malignant tumors and tissue fibrosis, more than a dozen small-molecule inhibitors have been developed to block the TGF-β signaling pathways, providing a novel method for controlling the development of these diseases. At present, pirfenidone, an inhibitor for TGF-β production, has been approved for treatment of idiopathic pulmonary fibrosis, while the inhibitors of TGFβRI/ALK5 for therapeutics of tumors or myelodysplastic syndromes, including LY2157299, EW-7197 and LY3200882, are in the phase I to III clinical trials, with additional ones inhibiting TGFβRs such as SB-431542, LY2109761, TP-0427736, and IN-1130 being in the preclinical phase. This paper reviews recent advances in research of small-molecule inhibitors targeting TGF-β and its receptors.

6.
Acta Pharmaceutica Sinica ; (12): 1122-1130, 2018.
Article in Chinese | WPRIM | ID: wpr-779979

ABSTRACT

UHPLC-QTOF-MS was applied to non-targeted metabolomics study of mice infected with K. pneumoniae ATCC® BAA 2146 to discover potential biomarkers and metabolic pathways that are associated with sepsis. Fifty-eight metabolites were identified by principal components analysis (PCA) and partial least-squares discriminant analysis (OPLS-DA), which was combined with variable projection importance (VIP) and nonparametric test. Eighteen of the 58 metabolites were further found to be involved in 8 metabolic pathways, including nicotinate and nicotinamide metabolism, pyrimidine metabolism, vitamin B6 metabolism, taurine and hypotaurine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism and glycerophospholipid metabolism.

7.
Acta Pharmaceutica Sinica ; (12): 887-894, 2018.
Article in Chinese | WPRIM | ID: wpr-779948

ABSTRACT

9-Acetoxycycloberberine (1) with a unique skeleton was first identified to display a potent antimicrobial profile against methicillin-resistant Staphylococcus aureus (MRSA) with MIC values of 1-16 μg·mL-1. Taking the compound as a lead, 14 target cycloberberine analogues with diverse structures, such as berberine and chelerythrine derivatives, were synthesized and evaluated for their anti-bacterial activities. Analysis of the structure-activity relationship revealed that:① ring E was essential for the activity; ② the removing of ring B decreased the activity against MRSA. However, the antimicrobial activity against vancomycin-resistant Enterococcus faecium (VRE) was improved; ③ the introduction of a suitable rigid substituent at the 9-position was beneficial for the activity. Among them, compound 9a showed the most potential activity against methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA isolates with MIC values of 0.5-1 μg·mL-1, suggesting a different mechanism from clinical drugs. It displayed higher stability in blood. Therefore, we consider 9a worthy of further investigation. The results provide key scientific evidence for development of such compounds into a new type of anti-MRSA candidates.

8.
Acta Pharmaceutica Sinica ; (12): 921-927, 2017.
Article in Chinese | WPRIM | ID: wpr-779675

ABSTRACT

IG-105, N-(2,6-dimethoxypyridine-3-yl)-9-methylcarbazole-3-sulfonamide, a novel antimicrotubule agent, showed potent anticancer activity in a variety of human tumor cells in vitro and in vivo. In order to characterize the metabolism and the possible drug-drug interaction of IG-105, we carried out a series of experiments. Drug metabolizing enzymes involved in IG-105 metabolism were investigated by using pooled human liver microsomes (HLMs) and recombinant cytochrome P450 isoforms (rP450s) respectively. The possible metabolites were analyzed by liquid chromatography-orbitrap-mass spectrometry (LC-Orbitrap-MS). The inhibitory effect of IG-105 on main P450 enzymes was also evaluated. The results showed that IG-105 can be metabolized by a series of rP450s, including CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and CYP3A5, with the major contribution enzymes being CYP1A2, CYP2B6, CYP2C19, and CYP3A. Three metabolites (M1-M3) were identified and demethylation was the major phase I metabolic reaction for IG-105. IG-105 moderately inhibited CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A enzyme activities with IC50 values of 6.42, 23.64, 0.39, 1.4, and 3.14 μmol·L-1, respectively. Since the biotransformation of IG-105 involves multiple enzymatic pathways, the compound is less likely to be a victim of a concomitantly used medicine which inhibits activity of one of the CYPs. However, as IG-105 showed medium to strong inhibition on CYP1A2, CYP2D6, CYP3A, and CYP2C19, caution is particularly needed when IG-105 is co-administrated with other anticancer drugs which are mainly metabolized by the above enzymes.

9.
Acta Pharmaceutica Sinica ; (12): 105-2016.
Article in Chinese | WPRIM | ID: wpr-779142

ABSTRACT

Chuangxinmycin (CM) from Actinoplanes tsinanensis was an antibiotic discovered by Chinese scientists about 40 years ago. It contains a new heterocyclic system of indole fused with dihydrothiopyran, whose biosynthetic mechanism remains unclear. CM is used as an oral medicine in the treatment of bacterial infections in China. The simple structure makes CM as an attractive candidate of structure modification for improvement of antibacterial activity. Recently, we analyzed the secondary metabolites of Actinoplanes tsinanensis CPCC 200056, a CM producing strain, as a natural CM analogue. We discovered the first natural CM analogue 3-demethylchuangxinmycin (DCM) as a new natural product. Compared to CM, DCM exhibited a much weaker activity in the inhibition of the bacterial strains tested. The finding provides valuable information for the structure-activity relationship in the biosynthesis of CM.

10.
Acta Pharmaceutica Sinica ; (12): 105-109, 2016.
Article in Chinese | WPRIM | ID: wpr-320009

ABSTRACT

Chuangxinmycin (CM) from Actinoplanes tsinanensis was an antibiotic discovered by Chinese scientists about 40 years ago. It contains a new heterocyclic system of indole fused with dihydrothiopyran, whose biosynthetic mechanism remains unclear. CM is used as an oral medicine in the treatment of bacterial infections in China. The simple structure makes CM as an attractive candidate of structure modification for improvement of antibacterial activity. Recently, we analyzed the secondary metabolites of Actinoplanes tsinanensis CPCC 200056, a CM producing strain, as a natural CM analogue. We discovered the first natural CM analogue 3-demethylchuangxinmycin (DCM) as a new natural product. Compared to CM, DCM exhibited a much weaker activity in the inhibition of the bacterial strains tested. The finding provides valuable information for the structure-activity relationship in the biosynthesis of CM.


Subject(s)
Anti-Bacterial Agents , Chemistry , China , Indoles , Chemistry , Micromonosporaceae , Chemistry , Structure-Activity Relationship
11.
Acta Pharmaceutica Sinica ; (12): 427-434, 2014.
Article in Chinese | WPRIM | ID: wpr-245066

ABSTRACT

Identification and validation of a new target is one of the most important steps for new antituberculosis (TB) drug discovery. Researches have shown that Mycobacterium tuberculosis (Mtb) encodes 20 CYP450 enzymes which play important roles in the synthesis and metabolism of lipid, cholesterol utilization, and the electron transport of respiratory chain in Mtb. With the critical roles within the organism as well as the protein structures of six Mtb CYP450 enzymes being clarified, some of them have been highlighted as potential anti-tuberculosis targets. In this paper, the phylogenetic analysis, the structural features, and the enzymatic functions of Mtb CYPs, as well as the mechanism of interactions with selective inhibitors such as azole antifungal agents for the CYPs have been reviewed and summarized. The druggability of the CYPs has also been analyzed for their further utility as targets in high throughput screening and rational design of more selective inhibitors.


Subject(s)
Humans , Antitubercular Agents , Chemistry , Pharmacology , Azoles , Chemistry , Pharmacology , Cytochrome P-450 Enzyme Inhibitors , Chemistry , Pharmacology , Cytochrome P-450 Enzyme System , Genetics , Metabolism , Drug Delivery Systems , Methods , Drug Discovery , Mycobacterium tuberculosis , Genetics , Phylogeny , Tuberculosis , Drug Therapy , Microbiology
12.
Acta Pharmaceutica Sinica ; (12): 928-935, 2011.
Article in Chinese | WPRIM | ID: wpr-233074

ABSTRACT

Aminoglycoside antibiotics, due to their strong antibacterial effects and broad antimicrobial spectra, have been very commonly used in clinical practice in the past half century. However, aminoglycoside antibiotics manifest severe ototoxicity and nephrotoxicity, and are one of top factors in hearing loss. In this study, three members of the aminoglycoside antibiotics family, gentamycin, neomycin and streptomycin, were chosen as the representatives to be investigated for their toxicity to the embryonic development and the larva hair cells in zebrafish, and also to their target genes associated with hearing-related genes. The results showed that: (1) the lethal effect of all three drugs demonstrated a significant dependence on concentration, and the severity order of the lethal effect was streptomycin > neomycin > gentamycin; (2) all the three drugs caused the larva trunk bending in resting state at 5 dpf (day past fertilization), probably due to their ototoxicity in the physical imbalance and postural abnormalities; (3) impairment and reducing of the hair cells were observed in all three cases of drug treatment; (4) four genes, eya1, val, otx2 and dlx6a, which play an important role in the development of hearing organs, showed differential and significant decrease of gene expression in a drug concentration-dependent manner. This study for the first time reports the relevance between the expression of hearing genes and the three ototoxic antibiotics and also proved the feasibility of establishing a simple, accurate, intuitive and fast model with zebrafish for the detection of drug ototoxicity.


Subject(s)
Animals , Aminoglycosides , Toxicity , Anti-Bacterial Agents , Toxicity , Embryonic Development , Gene Expression Regulation , Gentamicins , Toxicity , Hair Cells, Auditory , Cell Biology , Hearing Disorders , Genetics , Metabolism , Homeodomain Proteins , Metabolism , Intracellular Signaling Peptides and Proteins , Metabolism , Larva , Lateral Line System , MafB Transcription Factor , Metabolism , Models, Animal , Neomycin , Toxicity , Nerve Tissue Proteins , Metabolism , Nuclear Proteins , Metabolism , Otx Transcription Factors , Metabolism , Protein Synthesis Inhibitors , Toxicity , Protein Tyrosine Phosphatases , Metabolism , Streptomycin , Toxicity , Zebrafish , Embryology , Zebrafish Proteins , Metabolism
13.
Acta Pharmaceutica Sinica ; (12): 724-729, 2010.
Article in Chinese | WPRIM | ID: wpr-354542

ABSTRACT

Liver cancer is one of the most common neoplastic diseases with high mortality in China. Currently, antimicrotubule drugs such as paclitaxel (PTX) and vincristine (VCR), are used as the common agents in the clinical chemotherapy for liver cancer. However, the responses of patients to these drugs vary markedly. Successful identification of intracellular factors influencing liver cancer's sensitivity to antimicrotubule drugs would be of great clinical importance. In this study, by engineering human hepatoma cell HepG2 to overexpress synuclein-gamma (SNCG), we investigated if SNCG is a molecular factor associated with the sensitivity to antimicrotubule drug treatment. Real-time RT-PCR and Western blotting assays showed SNCG was successfully overexpressed in HepG2/ SNCG cells compared with HepG2/Neo cells. The overexpressed SNCG altered the proliferation activity in HepG2 cells, which was 66% higher than that of HepG2/Neo cells through MTT method. The overexpressed SNCG also reduced sensitivity of HepG2 cells to antimicrotubule drugs: after PTX or VCR treatment, the proportion of HepG2/SNCG cells in G2/M arrest was significantly lower than that in HepG2/Neo cells. Correspondingly, HepG2/SNCG cells showed significantly lower mitotic index than HepG2/Neo cells. Meanwhile, HepG2/SNCG cells showed higher resistance to PTX and VCR than HepG2/Neo cells, with resistance index 21 and 15 respectively. Our studies suggested that the overexpression of SNCG could confer resistance to antimicrotubule drugs in hepatoma cells; and it indicated that SNCG may be as a potential response marker for antimicrotubule drugs in liver cancer chemotherapy.


Subject(s)
Humans , Antineoplastic Agents, Phytogenic , Pharmacology , Cell Cycle , Cell Proliferation , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Genetic Vectors , Hep G2 Cells , Metabolism , Microtubules , Mitosis , Mitotic Index , Paclitaxel , Pharmacology , Plasmids , RNA, Messenger , Metabolism , Transfection , Vincristine , Pharmacology , gamma-Synuclein , Genetics , Physiology
14.
Acta Academiae Medicinae Sinicae ; (6): 298-303, 2006.
Article in Chinese | WPRIM | ID: wpr-281212

ABSTRACT

Extended-spectrum beta-lactamases (ESBLs), mediated by plasmids, can hydrolyze and cause resistance to penicillins, broad spectrum-cephalosporins, and monobactams. Most ESBLs are derived from the widespread broad-spectrum beta-lactamases TEM-1 and SHV-1. There are also other families of ESBLs, including CTX-M and OXA-type enzymes as well as novel unrelated beta-lactamases. This article reviews recent advances in the classification, characteristics, and other molecular biological aspects of ESBLs.


Subject(s)
Molecular Biology , beta-Lactamases , Classification , Genetics
SELECTION OF CITATIONS
SEARCH DETAIL